资讯首页 热点资讯初中高中竞赛自招

文库 > 竞赛自招 > 正文

多方位角度告诉您数学竞赛应该这样学!

211 0 0 2018-06-27 12:21:28

竞赛好苗子,首先他是热情的,勤奋的,其次是有抱负的,不畏艰难的;当然不能是临时抱佛脚的。冰冻三尺,非一日之寒。应该从高一前的暑假就开始不停的学习、训练。细细地说来,注意事项还有很多。

 

学习进度方面

要在高一开学之前的那个暑假里把整个高中的数学内容全部学完,并在高一上学期应该完成像高三一样的两轮复习,基础太重要了,第一试占了150分,不可小视。然后,就是竞赛内容了,不要以为看几本竞赛书就可以了,因为那些书上讲得太粗略;这时候,对老师的要求就更高。老师不但要对竞赛内容非常熟悉,还要不断地总结重要的思想方法,使学生能够灵活运用。

 

入门书单

首先如果要涉猎竞赛,最基本的高中课程是一切的基础。接下来的书就是建立在此基础上的。我们最先做的当然是补全差距:课标大纲和竞赛大纲之间的差距。

1)《新编中学数学解题方法全书》,即基础衔接书。

2)《奥数教程》

经典奥数蓝皮书。优点是与课本知识联系紧密,适合你在第一遍学习高中数学知识的同时同步提高,帮助你打下坚实的基础,以讲解为主,以测试为辅。(与《培优教程》二选一即可,小编认为《培优》稍难,但很散,推荐《奥数教程》)

 

提高书单

1)《奥赛小丛书》

专而精,很多专题非常精彩,难度涵盖联赛和冬令营,读起来也容易让同学们感兴趣。如果仅以省级国一为目标,其中概率、几何不等式可以不看,图论、组合几何、数论编的不错,集合变换、三角与几何虽然写的很好但不实用;其它的如函数、集合还好,可以看看。这套书中代数只有两本不等式,而且很不实用,不推荐。至于数学归纳法里面题很经典,不过很综合,可以放在该套书后面看。对于这套书要尽快看完,里面题要自己做,可能比较辛苦。总的来说这套书值得一看,要尽早开始看。

2)《奥赛经典》

内容比较全面,例题选取也比较新,难度也较高,适合着眼于联赛二试和冬令营的同学们;代数部分可以做为《奥赛小丛书》的补充。几何还可以,但定理可以只记最基本的,拓展的可以不记。组合,数论有时间可以看看,不过很多都和小丛书重复,没时间就算了。

3)《命题人讲座》

适合系统学习,冲刺冬令营,但没必要每本都做,挑其中较好的做便可。如《解析几何》、《函数迭代与函数方程》、《数列与数学归纳法》、《组合问题》、《三角函数与复数》、《向量与立体几何》、《初等数论》。

其中《初等数论》是目前数论方面非常系统、难度较高的一本书,很多学生读后也感觉受益匪浅。数论方面当然不能不提两位先生,一位是潘承彪教授,一位是余红兵教授,潘老师的《初等数论》是我们读书时的必读教材,也是大学里的教材,不仅仅局限于竞赛范畴;余老师关于数论的小册子《数学竞赛中的数论问题》,非常经典!

另外华罗庚的《数论导引》则非常优秀,适合看完《初等数论》后再深化学习。此外非常值得推荐的是《哈代数论》,值得永世珍藏。

4)《数学竞赛研究教程(套装上下册)

本书是参加数学竞赛的教练员和选手的必备用书。国内数学竞赛研究方面的权威参考书。

5)关于几何

《初等数学复习及研究平面几何》、《初等数学复习及研究立体几何》。有助于深化系统自己的几何基础。

6)关于组合

推荐单樽老师的《组合几何》《趣味图论》,以上均为上面提到过的数学奥赛辅导丛书的书,那一个系列基本上都非常出色,适合永世珍藏。

 

实战演练

1)《高中数学联赛备考手册》

这本书当然不能错过。各省预赛试题集锦。

2)高中数学竞赛专题讲座

浙大小红本。

3)《走向IMO

收集国内最高层次数学竞赛试题和国外数学奥林匹克试题,难度非常大。需注意千万不要陷于题目中,题目背后的思想方法往往更精彩、更有益。

4)历届CMO/IMO试题集

当然,准备联赛实战的同学还有很多参考书,例如《奥数精讲与测试》、《备考手册》、《几何瑰宝:平面几何500名题暨1000条定理》和《世界著名平面几何经典著作钩沉》等等;俄罗斯(苏联)的赛题也是很好的素材,其中的组合题适合不限年级的随时思考选用……

 

附件----保送后推荐看

1)首先是数学奥赛辅导丛书,分为第一辑,第二辑,现在紧随其后的叫数林外传,中科大出版。永恒的经典,是提高数学修养的好书,可以珍藏一生。

2)其次是数学小丛书,不是数学奥林匹克小丛书。数学小丛书是有华罗庚等数学大家写的,认真阅读受益终生。

3)数学专著:几何原本,希尔伯特几何基础,高斯算数探索等。外语水平好的建议看原著,水平稍差的中外对照着看。专著有助于真正提高水平,是成为大师的必由之路一。

4)在阅读数学名著,光看不动手做是不行的。推荐数学分析习题集:吉米多维奇,还有北大的习题集。其他基础可本人不是很了解。

5)数学基础课:数学分析推荐中科大常庚哲史济怀的数学分析教程,个人认为很适合学静思的同学使用。其他基础课国内的我不很了解,外文的倒可推荐几个系列。

6)图灵数学系列,数学名著译丛,华章数学译丛,法兰西精品译丛。

可能很多学竞赛的对这些基础课不屑一顾,但须知这些才是长远的。一味迷恋初等数学的技巧,忽视高等数学的重要性是难以走远,取得好的发展的。许多人说国内拿金牌的为什么获不了WOLF,菲尔茨奖,我想原因就在此。其实很多竞赛的好题都取材于高等数学,多看长长见识是有好处的。

智商在整个学习过程中其实是个次要的因素,努力、进取、方法才是决定学生成功与否的关键。往往我们只看到了国家集训队学生遇到难题时的从容不迫,于是我们把他们定义为天才。事实上他们付出的是成倍的努力,这种付出有几人能够做到?

如果说天赋很重要,能够坚持到最后永不放弃的这种恒心才算是天赋。在外人看来优秀学生的遥不可及的能力是日积月累而成的结果。至于夺得金牌,在相应领域成为最棒的科学家是进一步的事情,不是几句话说的清的。最好的学生一定是会用功的学生。他们比多数学生都睡的早,但不表示他们不勤奋。在勤奋的基础上,由于方法不同也会有高下之分。

诚然天赋的高低会决定你是进省队还是国家队,在这种顶尖竞赛中天赋是重要的。但天赋的高低不会影响你中高考成绩是否优秀。勤奋、态度、方法,这些是我们后天可以做到的,对待任何事情都应该勤奋;勤奋之余寻求好的方法改进自己的学习习惯。这是主动迎接学习挑战迎接人生挑战的积极态度。


我要评论 0条评论

0/300

自律公约

网友评论

来第一个评论吧